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Mathematical advances in signal processing through the fast Padé transform (FPT)
can greatly improve the information extracted via in vivo nuclear magnetic resonance
(NMR) chemistry. The FPT is a frequency-dependent, non-linear rational polynomial
approximation of the exact Maclaurin series, which dramatically improves resolution
and signal-to-noise ratio in a stable manner with robust error analysis and provides
precise numerical data for all the peak parameters (position, height, width and phase)
for every true resonance including those that are weak and/or overlapping. The con-
centrations of many of the chemical constituents of tissues can thereby be accurately
determined. These advantages of the FPT are particularly germane for in vivo NMR
detection and quantification of a number of molecular markers of breast cancer, such
as phosphocholine, as well as lactate, which cannot be assessed using standard Fourier
data analytical techniques applied to in vivo NMR in the clinical setting.
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1. The fast Padé transform for generic time signals: particular appropriateness
for in vivo NMR chemistry

The fast Padé transform (FPT) is a frequency-dependent, non-linear ratio-
nal polynomial approximation PK

/
QK (diagonal) or PK−1

/
QK (non-diagonal)

of the exact Maclaurin series. The expansion coefficients in the latter series are
provided by the raw time signal points {cn}. In the literature this polynomial
quotient, as a rational function of angular frequency ω, is known as the Padé
approximant (PA). The PA has been alternatively termed the fast Padé trans-
form for signal processing [1]. This is done to point out a special feature of the
PA in signal processing, i.e. the possibility of obtaining a shape spectrum from
a time signal via a non-parametric or shape estimation similar to the fast Fou-
rier transform (FFT) [2]. This type of estimation is performed by evaluating the
Padé spectrum PK−1

/
QK or PK

/
QK without searching for the spectral param-

eters at all, such as the complex-valued nodal frequencies {ωk} and the corre-
sponding amplitudes {dk}. This is in contradistinction, e.g. to Hankel–Lanczos
Singular Value Decomposition [3], which computes the shape spectrum exclu-
sively through obtaining the peak parameters {ωk, dk} first. The FPT computes
the ansatz spectrum F(z−1) = (1/N )

∑N−1
n=0 cnz−n, which is a truncated version

of the mentioned Maclaurin series, via the unique ratio of two polynomials, e.g.
in the non-diagonal form F(z−1) = PK−1(z−1)/QK (z−1) at any real or complex
frequency ω as follows:

F(z−1) = 1
N

N−1∑

n=0

cnz−n, F(z−1) ≈ PK−1(z−1)

QK (z−1)
. (1)

Here, z is a complex harmonic variable, z = eiωτ , where τ is the sampling
time. The real and imaginary part of the complex number u will be denoted by
Re(u) and Im(u), respectively.

1.1. Resolution and signal to noise ratio enhancements by the FPT compared
to the FFT

The FFT is a low-resolution spectral/image estimator, which provides a
shape spectrum from pre-assigned frequencies whose minimal separation is deter-
mined solely by the acquisition time, T = Nτ . In other words, the FFT spectrum
is defined only at the Fourier grid points, 2πk/T (0 ≤ k ≤ N − 1) [1]. The strategy
applied in attempts to improve resolution has been to increase the acquisition
time and thereby decrease the distance 1/T between the grid points. This, how-
ever, is often not an adequate solution, because, e.g., in vivo nuclear magnetic
resonance (NMR) signals become heavily corrupted with background noise at
longer acquisition times. Since these time signals decay exponentially, the larger
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signal intensities are observed early in the recording. It is therefore advantageous
to encode the time signal as rapidly as possible, i.e. to avoid long acquisition
times at which mainly noise will be recorded. Thus, there are two mutually exclu-
sive requirements, and as a result, within the FFT, attempts to improve reso-
lution lead to a worsening of the signal-to-noise ratio (SNR). The FFT is a
linear transform, and, as such, imports noise as intact from the measured time
domain data to the theoretically analyzed frequency domain, further contribut-
ing to poor SNR [1]. In essence, the FFT lacks an extrapolation property. With
the FFT it is a usual practice to add extra data points that are zeros, in order
to lengthen the signal. Namely, instead of recording a signal with nothing in it
but noise, the signal is artificially lengthened by adding zeros. The first doubling
(N → 2N ) leads to a sinc-interpolation of the original FFT [4]. Specifically, with
one zero filling the FFT of the doubled exponentially decaying time signal yields
twice as many Fourier coefficients as the FFT of the original time signal, with
the new values located between the original Fourier coefficients [4]. Further addi-
tion of zeros to the exponentially decaying time signal beyond 2N does not lead
to any more interpolation relative to the first doubling of N .

In contrast, the FPT is a truly powerful interpolator/extrapolator. Due to
the presence of the implicit polynomial inversion via Q−1

K in PK−1(z−1)
/

QK (z−1),
inference is gained from a non-measured infinite number of signal points by
using only the available finite set {cn}(0 ≤ n ≤ N − 1). The FPT does not
use the fixed Fourier mesh ω̃k = 2πk/T (k = 0, . . . , N − 1) in the frequency
domain, and therefore, can be computed at any frequency ω. Resolution in the
FPT is not pre-determined by T. Rather, the resolution in the FPT is the aver-
age distance �ωave between adjacent frequencies in a selected range. In a given
frequency window, one usually has �ωave < �ω̃min, so that the FPT has a bet-
ter resolving power, relative to the resolution �ω̃min = 2π/T in the FFT. Thus,
a major advantage for analysis of MR signals is that the Padé theory performs
both extrapolation and interpolation, which translate directly into enhanced res-
olution.

The FFT is linear because the coefficients {aFFT
n,k } of the transformation

from the time to the frequency domain are independent of the signal points:

Fk = 1
N

N−1∑

n=0

aFFT
n,k cn, aFFT

n,k = constants = e2iπnk/N . (2)

As opposed to the FFT whose linearity preserves noise fully from the time
signal, the FPT is a non-linear mapping, such that its coefficients aFPT

n,k are
dependent upon the time signal points {cn}. The non-linearity of the FPT effec-
tively permits noise suppression. Furthermore, as is clear from equation (2), the
FFT has a linear convergence (1/N ) with increased signal length N . In contrast,
the convergence of FPT is quadratic (∼1

/
N 2) or better [1].
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Rapid convergence together with the enhanced resolution effectively result
in markedly improved information content extracted by the FPT from in vivo
NMR signals encoded at short acquisition times. Convergence with the FPT is
not only rapid, but also extremely stable with robust error analysis. This has
been confirmed in Refs. [1,5,6] by detailed comparisons of the FPT and FFT
from high-field clinical in vivo 1H NMR data. The fidelity of the FPT has
also been internally cross-validated via two equivalent variants, the FPT(+) and
FPT(−) with the initial convergence-regions inside and outside the unit-circle,
respectively. Due to the uniqueness of the FPT, all the physical resonances from
the two variants have been demonstrated to coincide after convergence has been
reached in both variants [7].

1.2. Quantification: the FPT computes all peak parameters and entails no fitting

The FFT is exclusively a non-parametric estimator, providing only the
shape of spectral structures, but not their quantifications. The peak parameters
are subsequently extracted in post-processing by fitting the obtained structures to
a sum of Lorentzians and/or Gaussians, or the so-called Voigt profiles. Besides
the fact that fitting is non-unique, much information contained in the signal is
not obtained accurately, such as the actual position, width, height, and phase
of resonances [1]. In Refs. [1,2,8] elaboration and validation is provided for the
computational methods by which the FPT yields quantitative spectral parame-
ters. This is done without fitting and, furthermore, the solution is unique. To
extract the peak parameters, one solves the equation,

QK (z−1) = 0, (3)

which is known as the characteristic equation or the secular equation of the data
(Hankel) matrix. Every polynomial of degree n has n roots. Thus, equation (3)
has K roots z−1

k (1 ≤ k ≤ K ), where,

zk = eiωkτ , ωk = − i

τ
ln(zk). (4)

Once the K roots {z−1
k } of QK (z−1) are found, the corresponding ampli-

tudes {dk} are computed from the following explicit expression:

dk = PK−1(z
−1
k )

Q′
K (z−1

k )
, (5)

where Q′
K (z−1) is the first derivative of the denominator polynomial QK (z−1),

Q′
K (z−1) = dQK (z−1)

dz−1
. (6)
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The parametric complex Lorentzian spectrum is obtained from the Heavi-
side partial fraction expansion:

PK−1(z−1)

QK (z−1)
=

K∑

k=1

dk

z−1 − z−1
. (7)

Thus, the FPT arrives at the spectral parameters {ωk, dk} with minimal
computational effort and maximal accuracy. Here, the real, Re(ωk), and the
imaginary, Im(ωk), part of ωk are the position and the width of the kth peak,
whereas |dk |/Im(ωk) and arg(dk) are the corresponding height and phase, respec-
tively. Specifically, the FPT can find all the peak parameters of every physical
metabolite without ever using the Fourier spectrum, or any spectrum at all, for
that matter. The Padé spectrum

∑K
k=1 dk

/
(z−1 − z−1

k ) can be subsequently con-
structed for visualization purposes in any of the desired modes (absorption, mag-
nitude, etc.). We have developed both MATLAB as well as C++ user-friendly
software based upon the FPT. This software automatically and efficiently per-
forms the entire quantification by using only raw time signals [1,2,6–8].

1.2.1. Overlapping resonances (degenerate roots) can be quantified by the FPT
The above formulae are valid for non-degenerate spectra, i.e. for all distinct

roots {z−1
k } of equation (3). When some of these roots coincide with each other

(the so-called degenerate roots – leading to overlapping resonances), the above
formulae should be modified. For example, if the kth root z−1

k of QK (z−1) has
Mk ≤ K multiplicity (i.e. it is repeated Mk times), then the Padé spectrum from
equation (7) will acquire the form:

PK−1(z−1)

QK (z−1)
=

J∑

k=1

Mk∑

mk=1

dk,mk

(z−1 − z−1
k )mk

, dk,1 = dk (8)

where M1+M2+· · ·+MJ = K . Here dk,mk are the new amplitudes that generalize
equation (5) according to:

dk,mk = PK−1(z
−1
k )

Q(mk)
K (z−1

k )
, (9)

where Q(m)
K (z−1) is the mth derivative of the denominator polynomial QK (z−1),

Q(m)
K (z−1) =

(
d

dz−1

)m

QK (z−1). (10)

Also for the degenerate roots of equation (2), for the given N values of the
cn’s, one always obtains the unique quotient PK−1

/
QK . The time signal points
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{cn} associated with the physical Lorentzian spectrum from equation (6) with
non-degenerate (distinct) roots {z−1

k } are given by:

cn =
K∑

k=1

dkeinτωk , Im(ωk) > 0. (11)

On the other hand, the cn’s corresponding to the physical non-Lorentzian
spectrum with degenerate (multiple) roots {z−1

k } read as:

cn =
J∑

k=1

Mk∑

mk=1

dk,mk (nτ)mk−1einτωk , Im(ωk) > 0. (12)

All fitting techniques in the frequency domain use the given Fourier spec-
trum for extraction of peak parameters for the metabolites of interest. As men-
tioned, the FPT avoids fitting altogether, and accomplishes accurate quantifica-
tion by extracting the parameters of all the physical metabolites directly from the
encoded raw signal {cn} given by equations (11) and (12) that correspond to the
Lorentzian and non-Lorentzian spectra (7) and (8), respectively.

Every parametric estimator of, e.g. exponentially damped time signals
yields, by definition, the Lorentzian spectrum of the type

∑K
k=1 dk

/
(z−1 − z−1

k ).
However, this latter sum is nothing but the Padé polynomial quotient, as indi-
cated in equation (7). Hence, the FPT is optimally suited to spectrally analyze
exponentially decaying time signals. These signals are attenuated complex expo-
nentials (harmonics) with either constant or varying amplitudes according to
(11) or (12) that yield the Lorentzian (7) or non-Lorentzian (8) spectrum, respec-
tively. Thus, the FPT retrieves with fidelity overlapping or hidden resonances,
including those that may be disguised as noise [1]. In realistic synthesized mod-
els, it has been illustrated that the FPT successfully identifies overlapping peaks
that are entirely missed by the FFT [8].

1.3. The FPT applied to a wide variety of time signals

Regardless of the specific discipline, spectra are generally of a Lorentzian
or a non-Lorentzian type. The former non-degenerate spectra are engendered
from time signals with harmonic components that contain only distinct frequen-
cies with constant amplitudes. The latter, degenerate spectra are generated from
time signals that have distinct as well as confluent frequencies with stationary
and time-varying amplitudes. The FPT can handle both types of time signals,
which, by definition, yield the described Lorentzian and non-Lorentzian spec-
tra. This has been clearly demonstrated in numerous applications in chemistry
and physics [9–14] as well as in medicine [1, 5, 15–17]. The above-described time
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signals have been encoded in a large number of chemistry and physics experi-
ments using measuring techniques such as Infrared Spectroscopy, Ion Cyclotron
Resonance Mass Spectroscopy, as well as NMR, etc. The FPT has been effec-
tively applied to many such signals, with quantification of a large number of res-
onances via extraction of peak parameters (position, height, width, and phase)
[9–13]. Prior to these applications on encoded data, extensive testing was per-
formed on simulated signals of the same types as those measured. This is a vital
step, since for synthesized signals it is possible to select the number of harmonics
and to prescribe the frequencies and amplitudes to any level of accuracy. Using
this strategy, the FPT has been shown to retrieve all four parameters for each
resonance within machine accuracy for noiseless signals (see also [8]). When ran-
dom Gaussian noise of a standard deviation (SD) comparable to that found in
measured data is added, once again the FPT extracts all the simulated peak
parameters to within several decimal places of accuracy, that is to a level of
accuracy greater than what is actually required in practice [9, 11]. Testing on
simulated data that are similar to realistically measured signals establishes the
fidelity of the FPT for controllable input data and is therefore of crucial impor-
tance.

Clinical magnetic resonance spectroscopy (MRS) is a synonym for in vivo
NMR. Thus, MRS signals are of the same type as those encoded by NMR in
chemistry. It follows, thereby, that the methods established in NMR chemistry
should be applicable to MRS. The recently published book and series of papers
using the FPT applied to in vivo time signals encoded via MRS [1, 5, 15, and 16]
indeed confirm this to be the case. In vivo NMR signals, irrespective of the tissue
of origin, are of both Lorentzian and non-Lorentzian types. The free induction
decay curves are obviously time signals that display exponentially damped sinu-
soidal oscillations. Therefore, methods validated in one source of in vivo NMR
time signals (e.g. brain) can be justifiably expected to be applicable to the cor-
responding data from other organs (i.e. breast, prostate, etc.). We are now per-
forming this type of validation, the results of which will be soon forthcoming.
The current achievement using in vivo NMR signals encoded using e.g. 9.4 T and
ultra-short echo time in experimental animals has been to estimate the concen-
trations of some 18 metabolites [18]. However, with clinical scanners at 1.5 T,
in practice, only about five metabolite concentrations are estimated by means of
post-processing fitting from the spectra processed using the FFT. Clearly, even
the aim of quantifying several dozen metabolites is very modest, in light of the
fact that tissues contain far more resonances that could be detected and quan-
tified. From the corresponding in vitro findings, it has been repeatedly shown
that there is a wealth of clinically relevant information, particularly for distin-
guishing malignant and normal tissues, as well as for gaining deeper insights into
molecular mechanisms. Moreover, in vitro NMR has often demonstrated that the
most important information for detecting malignant lesions is found in closely
overlapping resonances, some of which decay rapidly and therefore can only be
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detected at short acquisition times. This is the case for breast tissue, as well be
discussed later in the next section.

2. NMR chemistry for early breast cancer diagnostics: current state of the art

2.1. Importance of magnetic resonance-based methods for early breast cancer
diagnostics

There is increasing interest in magnetic resonance (MR)-based modalities
for early breast cancer detection and screening, particularly among younger
women at high risk for this malignancy [19]. A key advantage of MR-based
diagnostics is the lack of exposure to ionizing radiation to breast, which is a
radiosensitive tissue. This is especially critical in light of the heightened radio-
sensitivity for women with genetic risk for breast cancer, i.e. with BRCA germ-
line mutations, Li Fraumeni syndrome (p53 tumor suppressor gene mutations),
as well as those who are heterozygous for ataxia–telangiectasia [20, 21].

Contrast-enhanced magnetic resonance imaging (MRI) with fat-suppressed
T1-weighting has a sensitivity between 95% and 100% for detection of breast can-
cer [22]. It is particularly valuable for identifying malignancy in dense breasts,
commonly seen in younger women (as well as in association with combined hor-
mone replacement therapy) among whom cancers, unless calcified, are difficult
to perceive using mammography [23, 24]. Breast MRI is considered superior
to mammography for detecting multifocal or multi-centric cancers, as well as
tumor recurrence and response to chemotherapy. However, false negative find-
ings using MRI have been reported for small tumors, particularly if they do not
selectively take up the contrast agent. Moreover, MRI cannot reveal microcal-
cifications [25], and occasionally misses invasive ductal and lobular carcinomas,
although non-detection with MRI is more common with in situ ductal carci-
noma [26]. The major problem with MRI, however, is that despite excellent spa-
tial resolution and generally superior sensitivity, it often has limited specificity,
thus sharing with mammography a high-false positive rate (approximately 50%)
(reports range from 37 to 97%) [27, 28]. In a recent prospective study among
1909 women with a genetic or familial predisposition to breast cancer, MRI
showed better sensitivity for breast cancer, but lower specificity than mammog-
raphy, i.e. MRI generated more uncertain findings, requiring follow-up or addi-
tional investigations [29]. Intensive surveillance programs with a large number
of false positive findings1 may impact unfavorably upon quality of life [30, 31].
Thus, questions remain about the appropriateness of breast MRI as a screening

1False positive is defined as a finding which appears to indicate the presence of a disease, when the
disease is not actually present. This occurs with diagnostic methods that have poor specificity. False
negative is defined as apparent absence of disease, when the disease is actually present. This occurs
with diagnostic methods that have poor sensitivity.
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tool in asymptomatic, high-risk patients, for whom the need to improve specific-
ity has been particularly underscored [22].

2.2. In vivo NMR chemistry findings in breast cancer

2.2.1. Total choline
While MRI yields anatomical/morphological images, in vivo NMR provides

complementary biochemical and physiologic information in the form of spectra.
1H MRS based upon the presence or absence of a composite choline resonance
increases the specificity of diagnosing breast cancer [27]. In a meta-analysis of
five clinical studies using in vivo one-dimensional (1D) single-voxel 1H MRS to
evaluate 100 malignant and 53 benign breast lesions, sensitivity, and specificity
of 83% (95% Confidence intervals (CI) = 73–89%) and 85% (95% CI = 71–93%)
were achieved, respectively. Better diagnostic accuracy was attained among the
20 women up to age 40. In these younger women, all 11 malignancies were cor-
rectly diagnosed. A more recent single-voxel 1H MRS study among 30 women
with positive mammogram and rapid contrast enhancement on breast MRI sim-
ilarly showed that the presence of choline (with SNR ≥ 2) improved the specific-
ity for breast cancer (to 87.5%), with three false positive results [32]. In another
recent single-voxel 1H MRS study [33] using a very long-echo time (TE) of
288 ms (plus inversion recovery sequence to attenuate the fat signal, as well as
water suppression by chemical selective saturation and improved shimming of
the static magnetic field), the presence or absence of choline accurately detected
19/19 breast cancers and 16/16 benign breast lesions. Among the patients with
cancer, the choline SNR varied from 2.4 to 12.7, with a mean value of 5.4.

Molecular imaging can be accomplished by combining MRI and MRS
to yield magnetic resonance spectroscopic imaging (MRSI). Rather than select-
ing a single voxel from three orthogonal slices to encompass a specific volume
as in MRS, a spectrum in MRSI is obtained at each point of selected grids
that can be of various sizes. Thereby, full volumetric coverage can be achieved
with MRSI. The advantages of MRSI for breast cancer diagnostics, relative
to MRS, have been emphasized [31]. A single voxel of tissue pre-selected via
MRS might not be sufficiently representative of the malignant process. How-
ever, MRSI can help assess, e.g. the degree of micro-invasion of surrounding
healthy tissue, aid in determining tumor grade and evaluating the success of ther-
apy. In the first reported investigation [34] of breast cancer using MRSI,2 the
choline SNR yielded a sensitivity of 87% and specificity of 85% among eight
patients with malignant lesions and seven with benign lesions. For an additional
three patients, MRSI was a technical failure. The mean choline SNR among the

2This MRSI investigation [19] was carried out at 1.5 T, shimming was performed to optimize field
homogeneity, three sequential CHEmical Shift Selective (CHESS) pulses were used for water sup-
pression, lipid signals were attenuated with inversion pulse and TE = 272 ms was selected.
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patients with breast cancer was 6.2±2.1 compared to 2.4±0.7 among those with
benign breast pathology. The distinguishing cut-point for choline SNR was 4.1,
with the highest benign value being 4, and the lowest malignant value being 4.1.
The authors from Ref. [34] note that unambiguous detection of the choline res-
onance was difficult at times, due to overlap with sidebands of residual water or
lipid resonances, and emphasized the need for improved data processing methods
to quantify choline in breast lesions.

Using a high-static magnetic field (4 T) and optimized surface coils with sin-
gle voxel in vivo 1H MRS, attempts were made to quantify total choline by an
algorithm that fitted one peak at a time over a narrow frequency band [35]. The
average of spectra at different TE values was used to try to separate non-cou-
pled metabolite resonances from the lipid-induced sidebands [36]. This method
was applied to 500 spectra from patients with breast cancer, with benign breast
lesions and with normal breast tissue. Total choline was significantly higher in
the malignant compared to benign lesions, but there was also overlap in the
respective ranges. Moreover, total choline was undetectable in several breast can-
cers, and elevated in some benign lesions, and even in a few normal breasts. The
total choline amplitude appeared to be influenced by the lipid content of the vo-
xel, either through baseline artifacts not suppressed by TE averaging or by a true
resonance at 3.25 ppm (parts per million). In smaller voxels, the fitting error was
also noted to be greater [35].

2.2.2. Water to fat ratios in breast cancer
The unsuppressed water to lipid ratio has also been compared in breast

cancer and normal mammary tissue with in vivo 1H MRS. The ratio of
water at 4.7 ppm to the major fat peak at 1.3 ppm at TE = 135 ms was sig-
nificantly higher at breast voxels containing cancer compared to contralateral
unaffected breasts of 17 patients, as well as relative to 14 healthy referents
[37]. However, there was a very large SD of the malignant ratios (6.0 ± 6.9)
suggesting a substantial overlap with the normal values (0.36 ± 0.25). When
overlapping metabolites cannot be resolved in 1D, then two-dimensional (2D)
MRS has been applied in attempts to separate the resonances using cross-
correlation plots. Results applying in vivo 2D MRS also revealed a signifi-
cantly higher diagonal peak volume of unsuppressed water relative to fat at
1.4 ppm among 21 patients with invasive breast carcinoma compared to 14
healthy referents with fatty breasts, but no ranges were given [38]. The diag-
onal peak volume ratios of water to methyl fat (0.9 ppm) and to olefinic
fat (5.4 ppm) were also significantly higher in the cancerous tissue using 2D
MRS, as were the water to cross peak volumes of unsaturated fatty acid at
the 2D frequency locations (2.1 ppm, 5.4 ppm) as well as (2.9 ppm, 5.4 ppm)
and triglyceride fat at (4.3 ppm, 5.3 ppm) [38]. The high water to fat ratios
seen in breast cancers are considered to reflect the presence of edema, which
correlates clinically with lymphatic blockage and involvement of subdermal
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lymphatics by the cancer. Some (but not all) of the patients followed by in vivo
1D MRS showed a drop in this ratio after chemotherapy; this response appeared
to correlate with response to the neoadjuvant therapy [37].

2.3. In vitro NMR chemistry findings in breast cancer

2.3.1. Individual chemical metabolites
As noted, the high resolution of in vitro NMR applied to extracted spec-

imens can provide a greater insight into the metabolic activity of cancerous
breast tissue. Resolution enhancement with in vitro NMR is achieved by very
strong magnetic fields (of the order of 10 T) applied to excised tissue speci-
mens. Analysis of excised breast cancers reveals that the composite choline peak
contains a number of water-soluble metabolites such as phosphocholine (PC),
glycerophosphocholine (GPC), betaine, analogous compounds containing the
ethanolamine head group and taurine, as well as choline itself [39]. Using tracer
kinetics and 13C NMR and 31P NMR to examine the biochemical mechanisms
underlying the high levels of water-soluble choline metabolites seen in breast can-
cer, two non-intersecting pathways were identified: phosphorylation and oxida-
tion of choline, that were augmented with malignant transformation of mam-
mary cells, with increased synthesis of PC and betaine, and suppression of cho-
line-derived ether lipids [39].

Gribbestad et al. [40] conducted an in vitro 1H NMR study3 comparing 14
extracts of malignant breast tissue and one fibroadenoma to non-involved breast
from the same group of patients. We subsequently performed logistic regression
analysis of these data to ascertain the sensitivity and specificity of individual
metabolite concentrations for identifying breast cancer [31, 41]. We found that
only lactate showed 100% diagnostic accuracy both with and without inclusion
of the fibroadenoma. The diagnostic accuracy of total choline4 was marginally
lower than several of the individual metabolites, including some of its own con-
stituents, as shown in table 1. Paired analysis (“t”-test) revealed a significant
difference in all metabolite concentrations when comparing non-infiltrated and
malignant breast tissue (always higher in the latter). The findings for lactate are
illustrated in figure 1.

In the study from Ref. [40] GPC, PC, phosphoethanolamine, total cho-
line, and lactate were elevated, as well, in the fibroadenoma compared to the
non-infiltrated tissue of the same patient. Moreover, most of the calculated
metabolite concentrations were at least one SD greater than the mean values
for normal breast tissue. In contrast, the calculated concentration of myoinositol

3Gribbestad et al. [40] performed their study using a BRUKER Avance DRX600 spectrometer at
14.1 T.
4The composite or total choline peak is comprised of choline (3.21 ppm), PC (3.22 ppm), and GPC
(3.23 ppm).
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Table 1
Individual metabolite concentrations with superior diagnostic accuracy for identifying breast cancer
compared to total choline – data from Gribbestad et al. [40], logistic regression calculations from
[31, 41]. The non-malignant samples include 1 fibroadenoma plus 12 samples from normal breast
tissue. The chemical shift is denoted in ppm (parts per million). Specificity is denoted by Spec and

Sensitivity by Sens.

Normal Breast versus Breast Cancer Non-malignant Breast versus Breast Cancer

Predicted Result Predicted Result

Normal Breast Observed Non- Breast
Observed Result Breast Cancer (% correct) Result Cancer Cancer (% Correct)

Lactate (1.33 ppm)
Normal breast 12 0 100% Non-cancer 13 0 100%

(Spec) (Spec)
Breast cancer 0 14 100% Breast cancer 0 14 100%

(Sens) (Sens)

Alanine (1.47 ppm)
Normal breast 12 0 100% Non-cancer 13 0 100%

(Spec) (Spec)
Breast cancer 1 13 92.9% Breast cancer 1 13 92.9%

(Sens) (Sens)

Choline (3.21 ppm)
Normal breast 12 0 100% Non-cancer 13 0 100%

(Spec) (Spec)
Breast cancer 0 14 100% Breast cancer 2 12 85.7%

(Sens) (Sens)

Phosphocholine (3.22 ppm)
Normal breast 12 0 100% Non-cancer 13 0 100%

(Spec) (Spec)
Breast cancer 1 13 92.9% Breast cancer 1 13 92.9%

(Sens) (Sens)

Phosphoethanolamine (3.22 ppm)
Normal breast 12 0 100% Non-cancer 13 0 100%

(Spec) (Spec)
Breast cancer 1 13 92.9% Breast cancer 1 13 92.9%

(Sens) (Sens)

Taurine (3.27 ppm)
Normal breast 12 0 100% Non-cancer 13 0 100%

(Spec) (Spec)
Breast cancer 1 13 92.9% Breast cancer 1 13 92.9%

(Sens) (Sens)

Total choline (Choline + Phosphocholine + Glycerophosphocholine)
Normal breast 11 1 91.7% Non-Cancer 13 0 100%

(Spec) (Spec)
Breast cancer 1 13 92.9% Breast Cancer 1 13 92.9%

(Sens) (Sens)
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Figure 1. Case-by-case analysis of calculated lactate concentrations in normal versus cancerous
breast tissue (from data by Gribbestad et al. [40]).

Along the abscissa are 10 individual cases, each separated by a tick mark. Calculated lactate con-
centrations are shown along the ordinate, in µmol/g wet weight (ww). The first value shown for an
individual case is the calculated lactate concentration in non-involved breast tissue (denoted as Nor-
mal). The second value shown for an individual case is the calculated lactate concentration in the
malignant breast lesion (denoted as Cancer). These data are shown only for those cases in which
both concentrations were available. In two cases, there were two malignant sampled concentrations;
the mean of these two values is shown in each case.

was nearly the same (0.465 and 0.448 µmol/g ww) for the fibroadenoma and for
the non-infiltrated tissue, respectively, of the same patient and showed the small-
est departure from the mean for normal breast tissue (+0.52 µmol/g ww of the
SD) [31].

On the basis of these data from a fairly small sample (with substantial
missing data for a few metabolite concentrations in malignant tissues), definitive
conclusions cannot be drawn about which metabolites are optimal for detecting
breast cancer and distinguishing this from normal tissue or benign lesions. Nev-
ertheless, several metabolites (most notably lactate) showed promise with respect
to diagnostic accuracy. On the other hand, total choline, upon which most in vivo
1H MRS diagnoses are customarily based, had marginally lower sensitivity and
specificity than several other metabolites. Myoinositol also provided some insight
that could be helpful for identifying benign breast lesions. Viewed together, these
analyses confirm that a rich “window” of information is provided by in vitro
1H NMR study of metabolite concentrations in malignant versus non-cancerous
breast tissue.

A more recent study [42] using in vitro 2D MRS to compare 11 involved
and 12 uninvolved lymph nodes from patients with breast cancer provide some
corroboration of the above findings from Refs. [31, 41]. Namely, the concentra-
tions of PC and GPC were significantly higher in involved compared to non-
involved nodes. This was attributed to increased membrane synthesis in cancer
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Figure 2. Case-by-case analysis of the ratio of the calculated phosphocholine (PC) concentration
to calculated glycerophosphocholine (GPC) concentration in normal versus cancerous breast tis-

sue (from data by Gribbestad et al. [40]).

Along the abscissa are 10 individual cases, each separated by a tick mark. The ratios of the cal-
culated PC to GPC concentrations are shown along the ordinate, in dimensionless units. The first
value shown for an individual case is the ratio of calculated PC to GPC concentrations in non-
involved breast tissue (denoted as Normal). The second value shown for an individual case is the
ratio of calculated PC to GPC concentrations in the malignant breast lesion (denoted as Cancer).
These data are shown only for those cases in which both concentrations were available. In two cases,
there were two malignant sampled concentrations; the mean of these two values is shown in each
case.

cells, suggesting that metastatic breast cancer cells were present in the lymph
nodes. There was also a highly significant difference (p = 0.0001) between
the lactate concentrations in involved and non-involved nodes [42]. The elevated
lactate reflects the presence of cancer cells whose energy source is from the
anaerobic glycolytic pathway. Animal models of breast cancer also support the
importance of assessing the rate of glycolysis and lactate clearance with respect
to the diagnosis and prognosis of breast cancer [43]. Thus far, however, neither
1D nor 2D clinical in vivo 1H NMR has included lactate as a metabolic marker
of breast cancer.

2.3.2. Relationships of the chemical metabolites
In our analyses of the data of Ref. [40] many of the metabolite concentra-

tions in the malignant tissues were significantly correlated. However, alanine was
not correlated with phosphoethanolamine or with GPC, nor was choline concen-
tration correlated with those of several other metabolites in the malignant tis-
sues. Furthermore, principle components analysis revealed that those metabolites
with the strongest diagnostic accuracy did not consistently load with the others.



Dž. Belkić and K. Belkić / Optimization of in vivo NMR chemistry via the fast Padé transform 99

Figure 3. Major steps in choline metabolism in mammalian cells through the cytosine diphos-
phate (CDP)-choline pathway [45–47], emphasizing 1H NMR visible compounds. Chemical shift is

denoted in parts per million (ppm).

We also analyzed the ratio of PC to GPC from Ref. [40]. Unlike most of
the individual metabolites, the PC/GPC ratio was highly skewed and kurtotic
(3.9 and 16.9, respectively), so that only non-parametric statistical methods were
used. The Wilcoxon matched pairs test revealed a significantly higher PC/GPC
ratio in the breast cancer samples compared to the normal tissue from the
same patient (p = 0.005). These paired findings for the PC/GPC ratio are dis-
played in figure 2. Using the Mann–Whitney test with all the measured data, the
breast cancer samples showed a significantly higher PC/GPC ratio compared to
the normal, non-infiltrated tissue (p = 0.000029, 2-sided exact p). These findings
corroborate human breast cell line research, indicating that malignant transfor-
mation is associated with a so-called “glycerophosphocholine to phosphocholine
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switch” [44], related, inter alia, to over-expression of the enzyme choline kinase
responsible for PC synthesis [39, 45], and also reflecting altered membrane cho-
line phospholipid metabolism. Figure 3 presents the major steps in choline
metabolism in mammalian cells through the cytosine diphosphate (CDP)-choline
pathway [45–47]. Therein, emphasis is given to the 1H NMR visible compounds,
namely: choline (3.21 ppm), PC (3.22 ppm), and GPC (3.23 ppm), underscor-
ing the clinico-biological importance of analyzing the relationship among these
closely overlapping resonances. On the other hand, by summing these three
metabolites as “total choline”, as is currently done with in vivo NMR, substan-
tial information for breast cancer diagnostics is missed.

3. Potential relevance of Padé optimized in vivo NMR for early breast cancer
diagnostics

Based upon these in vitro findings, it is natural to expect that a richer “win-
dow” of informational content ought also to be available for extraction from
NMR data encoded from the breast in vivo. This has generally been missing
from the literature thus far. One of the key obstacles to a greater use of MRS
in breast cancer diagnostics has been the lack of a uniform approach to data
analysis. Data compatibility is needed in order to make multi-center comparisons
that are indispensable for wider routine application of in vivo NMR in oncol-
ogy [48]. Differences in data processing methods, rather than real differences,
are considered as the major contributor to deviations among various clinical
results in MRS [49]. At loggerheads with the need for data compatibility is the
requirement within the FFT for fitting, which can lead both to spurious peaks
(over-modeling or overfitting) and true metabolites being undetected (under-
modeling or underfitting). This is unacceptable for medical diagnostics, and also
renders inter-study comparisons tenuous, at best, unless, e.g. the same in vitro
basis set is used to predetermine the number of metabolites. Such fitting is based
upon prior-knowledge/measurement of in vitro data, before analysis of the actual
in vivo spectrum has been attempted [18]. Although claims have been made that
fitting procedures can be automatic and objective, their major pitfalls and inher-
ent subjectivity have been highlighted [1]. If one does not include an in vitro
metabolite in the basis set of, e.g. the so-called Linear Combination Model of
in vitro spectra [18], then one is going to have a very bad fit precisely at the fre-
quency location where the missing metabolite is expected to occur in the studied
in vivo spectrum. This leads to subjectivity of all estimators that guess the num-
ber of metabolites. These problems are most pronounced with respect to overlap-
ping resonances, which have been shown to be of utmost importance in breast
cancer diagnostics, e.g. at 1.3–1.4 ppm where lipids and lactate overlap, and at
3.2 ppm where the difference between PC and GPC is at the level of 0.01 ppm.
As elaborated here and in the cited references, not only can the FPT retrieve
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overlapping resonances with fidelity, but it also provides unequivocal quantifica-
tion. As noted, breast cancer diagnostics using in vivo NMR have relied mainly
upon assessments of the composite choline peak. Notwithstanding the need to
expand the number of metabolites upon which this diagnosis is made, accurate
quantification of total choline and its components via the FPT would repre-
sent an important breakthrough. Moreover, the improved resolution and SNR
provided by the FPT could help detect low concentrations of total choline, as
well as offer the possibility of detecting potentially informative resonances with
short T2-relaxation times, that will have decayed at longer TE, such as myoino-
sitol, whose concentrations yielded the clearest distinction between breast can-
cer and fibroadenoma in our analysis [31] of in vitro MRS data from Ref. [40].
Furthermore, our initial results for 2D FPT with respect to 2D MRS, using
cross-correlation diagrams reveal marked improvement in resolution relative to
2D FFT [50]. In 2D MRS one of the time axes is usually long, but the other
must be short to maintain a reasonable scanning time. This is where estimators
that can extract information from short-time signals become indispensable. The
FPT has been shown to fulfill this critical task, which is virtually unfeasible by
attempts to extend the 1D fitting algorithms to two-dimensions. The possibilities
of, e.g. 2D J-resolved MRS to extract vital information for tumor detection have
been underscored. With the aid of the Padé-based data analysis, these advanta-
ges of 2D MRS could be optimally utilized for breast cancer diagnostics.

Work is on-going to apply the FPT to in vivo MRS signals encoded from
patients with breast and other cancers, and compare these to findings from non-
malignant tissue, aiming at optimizing cancer detection, especially at an early
stage. Another vital component is the use of the FPT for quantitative analysis
of in vivo NMR signals from non-malignant lesions that have thus far presented
differential diagnostic dilemmas, notably benign tumors, infectious or inflamma-
tory lesions. It will be particularly important to consider benign breast condi-
tions that are difficult to distinguish from breast cancer using other non-invasive
diagnostic modalities. These difficult differential diagnoses include, e.g. ductal
hyperplasia, fibroadenoma, and fibrocystic changes; it should also be noted that
the lactating breast has high concentrations of choline. Insofar as the expected
improvements in diagnostic accuracy are achieved by Padé-based in vivo NMR,
this could then be applied in younger women at high risk for breast cancer with
the aim of determining the suitability of this newly emerging methodology for
surveillance and screening.
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[13] J. Main, P.A. Dando, Dž. Belkić and H.S. Taylor, Europhys. Lett. 48 (1999) 250.
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